
Synthesis of Reactive Systems – Final Exam

ECI 2010

Submission: August 30th, 2010

Questions 1-3 weigh 331
3
% each. Question 4 weighs 20% (bonus). The maxi-

mal grade is 100%. Feel free to contact me by email (firstname.lastname@doc.ic.ac.uk)
if you have questions. If you are at the UBA you could also contact Nicolas.
Please email me your answers by the date above. Good Luck!

1. (a) Translate the following English specifications to LTL. The letters
p, q, and r are atomic formulas (i.e., describe sets of states).

i. Every two p-states are separated by two r-states that occur
strictly after the first p-state and strictly before the second
p-state.

ii. Every p-state is either in the initial position, comes right after
the end of a q sequence that started from an r, or remains
true until the occurrence of an r.

(b) Construct a temporal tester for one of the properties that you
wrote.

(c) The following property is not expressible in LTL.

The proposition p holds in every even position.

Notice that this is very different from p ∧0(p↔ 2¬p). Indeed,
the second one requires that p is false in all odd positions while
the first one does not care about odd positions. This property is
generally known as “LTL cannot count”. Notice, that in an odd
position the property checks all future odd positions and in an
even position the property checks all future even positions.

Show how to construct a temporal tester for this property. Unlike
all temporal testers we have encountered so far, this temporal
tester will have to use additional variables that serve as memory.
It should, as usual, have one Boolean variable that signals the
current truth value of the formula.

2. (a) Devise an algorithm to check satisfiability of LTL formulas. That
is, given an LTL formula, check if there is some computation of
some system that satisfies this LTL formula.

(b) Show that validity of LTL formulas (do all computations of all
systems satisfy it) and model checking of an LTL formula over an
FDS can be reduced to satisfiability.



That is, suppose that you have a program that gets an LTL for-
mula and answers “yes” if it is satisfiable and “no” if it is not.
Use this program to construct a program that will answer “yes”
or “no” to the questions of validity and model checking.

3. (a) Consider a game G = 〈V ,X ,Y ,Θe,Θs, ρe, ρs,0 p〉. Prove that
the algorithm in Figure 1 computes the set of states in the game
from which the system can enforce 0 p. Recall that the proof has
to include two parts:

i. Soundness - from every state in the computed set great there
is a strategy that enforces 0 p.

ii. Completeness - every state from which 0 p can be enforced
is maintained in the fixoint throught the computation.

You may assume that both Θs = T and ρs = T.

1. fix (great := p) {
2. great := great ∧4 p;
3. end // fix

4. if (∀X . Θe → ∃Y . Θs ∧ great)
5. Win!

6. else

7. Lose!

Figure 1: Algorithm for controlling 0 p.

(b) Consider the algorithm for solving GR(1) games (see slide 141 in
the notes). Extract from it a simpler algorithm for solving games
with a winning condition of the form 10 p.

4. Consider a game G = 〈V ,X ,Y ,Θe,Θs, ρe, ρs,0 p〉, where p is a tempo-
ral formula that uses past operators. Suppose that T = 〈V̂ , Θ̂, ρ̂, ∅, ∅〉 is
a temporal tester for p that is complete and deterministic with respect
to V . Let xp ∈ V̂ be the variable of T such that in every computation
σ : s0, s1, . . . of T we have xp = T in a state si of σ iff (σ, i) |= p.

I mentioned that the synchronous parallel composition of G and T
is a safe way to reason about controlling 0 p. Recall that G ‖| T =
〈V ∪ V̂ ,X ,Y ∪ V̂ ,Θe,Θs ∧ Θ̂, ρe, ρs ∧ ρ̂,0xp〉.
Find a game G and a formula 0 p such that adding the variables of T
to the control of the environment is incomplete. That is, show that in
the game

˜G ‖| T = 〈V ∪ V̂ ,X ∪ V̂ ,Y ,Θe ∧ Θ̂,Θs, ρe ∧ ρ̂, ρs,0xp〉

The environment can win although the system can control 0 p.


